If it's not what You are looking for type in the equation solver your own equation and let us solve it.
16x^2-200x+91=0
a = 16; b = -200; c = +91;
Δ = b2-4ac
Δ = -2002-4·16·91
Δ = 34176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{34176}=\sqrt{64*534}=\sqrt{64}*\sqrt{534}=8\sqrt{534}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-200)-8\sqrt{534}}{2*16}=\frac{200-8\sqrt{534}}{32} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-200)+8\sqrt{534}}{2*16}=\frac{200+8\sqrt{534}}{32} $
| -9x-10+6x=11 | | 3x+2=4x-(x+5) | | 81x^2−64=0 | | 42(x−1)=−7(6−x)+35x | | 10=p10 | | 10y-22=8 | | 104=x-34 | | 23=j-5 | | 6n-5/8=7/8 | | 12=-10h+40 | | 1.3(7x+10)=44.85 | | X=-16+4y | | (2x-3)(2x+1)-1=4x(x-5) | | 0.8(6x)=64 | | 7x+2(-2x+1)=29 | | 20x^2+19x+3=0. | | 3n=1212 | | 20y^2+19^y+3=0 | | 6=x5 | | 22=4+3n | | 68-m=45 | | -3.5(1-2.5s)=-18.5 | | a/3+3=16 | | -2(x+5)+8=22+x | | 3x-7=9+2x. | | 7(9+3x)=210 | | -2(7+8x)-1=2x-15 | | 5x+8=8x-9 | | 4x+5=0x+7 | | c8=9 | | 5-2x=87 | | 38+2a=4(2+3a) |